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ABSTRACT

Previously derived formal expressions for the mean square
deflection of a beam of energetic test particles from a spatially
uniform plasma are evaluated numerically. The plasma electrons

are assumed to be drifting relative to the ions with a velocity
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which ranges belween zero and the cri

the onset of the ion sound wave instepility. Though the scatter-
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ng =onzgle diverzes at the stablility boundary, one mist be able to
make the drift wvelocity prohibitively close to the critical drift

velocity (to within a small fraction of 2 percent of it) to see a
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marked enhancerent. In no case was the scatteri

the thermal valus by as ruch as a facter of




I. INTRODUCTION

One analytical framework in which the scattering of energetic
test particles by a plasma can e discussed is provided by the

auto-correlation function for the microscopic electric field. In

ct

a spatially-uniforn plasma in which there exist no mscroscopic
p y T 1Y

charge densities and in which the mean electric field
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€iectrons wnlca are not relavive to the dcns. The relstive Sridt




coefficients derived from the Balescu-Lenard equation for the test
particle beam. Reference 4 deals with the isotropic (zero drift
velocity) case, and Reference 5 is restricted to the case of
parallel drift velocity and test particle velocity. This work
generalizes to the case of an arbitrary angle of incidencé, and
finds the most enhanced scattering at large angles between the

drift and test particle velocities. Also new in the present calcu-
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eript to avoid any ad hoc estirates of the multi-

dimensicnzl intezrals which apvear;

disappointing. Tt has often been observed (see, for exanmple,
Rostoker ) that fluctuations in the microscepic electric field are

L0047

greatly enhanced at the threshold of linear instability, and diverge

at the boundary. The effect is well known in the theory of
7 0
, . . 2
incoherent electromagnetic wave scatisring. In the present

the linear stavilivy boundary, of the meean scuszrs scattering
angle. e do in fact find such 2 divergence (3scticn IIT), but it
is only logarithmic in its devendence on the difference belween




magnitude ovei the zero-drift value, the critical drift velocity
must be approached within a very small fraction of a per éent.
Experimentally, of course, it is at present out of the question to
control the drift velocity to this accuracy. The enhancement of
scattering is much less dramatic than in the electromagnetic wave
case. |

An outline of the work is as follows. The proposed experi-

C

mental geometry is described, and the integral expressions for the

rean sauare scaittzring angles are derived in Szction I1. Evalua-

h

tion o
swanary is provided in Section IV. An Appendix relates the expres-
sion for small-enzle scattering which we have used to the

Pas

ted ninety-degree deflection time of Tidman and Eviatar,




IT. EXPRESSIONS FOR THE SCATTERING COEFFICIENTS

The experimental arrangement is idealized as in Figure 1.
The plasma is treated as a uniform rectangular slab of infinite
length and thickness d. The electron-and ion distributions are

treated as uniform and field-free, in the macroscopic sense.

electrons, V., it is parallel

(v
f~te
[47]
o
=
M
-
L
ch
;.:v.
<|
[t
5
[_l
-
ch
o]
Hh
Cl
P

Then ther

-

. . , , th
o nunmber density n The disvuritution for tns J speciss of
o}
-
varticle (j = 1 for icns, § = e for electrons) is fj (v), and




Fj (w) z I fj (V) § (u - K - ;yk)d? is the one-dimensional distri-
bution in the component of velocity along the vector K. The plasma

dielectric function2 is
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D+ (—. i(.U) = 1 - 1im 2 -E‘J— Fj (u) o . (5)
’ e=0 " k W+ ku - ie
o .th . 2 2
The plasna freguency of the j  component is w, = Mnnoe /mj.
J
Forrmlas (1), (2), and (3) in principle solve the
problen, but the complicated nature of the speciral density
< 5, >, mexes the many definite intezrals hard to do. The
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of T >>7T,. Sauations (Lz) and (Lb) sive at once that
2.-1/? 2,2
F.(u) = (2ﬁ7£) " exp (-u /E/i) and
L 2.-1/2 o 22,2
re(u) = (cﬁ/e) exn (-(u - & ) 2ve),
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The k integration is most expeditiously performed in spherical
polar coordinates as shown in Fig. 2. Referred to Cartesian coordi-

nates with x-axis along V; and ?& in the x2 plane,

K = k (cos 6, sin 6 cos w, sin  sin o),
V& = V4 (cos 7, 0, sin y),
\7’0 = v, (1, 0, 0),
k . V; = k v, cos o,
k. V& = ¥y [cos 8 cos y + sin € gin 7 sin o],
E o= ¥° ax a (cos 8) ac .

As usuel, the radial k-integration will diverge logarithmically
because in calculating spectral densities for a plasma, the short
range part of the Coulomb potential cannct resdily be given proper
treatment. Also as usuzl, we clrcumvent this by cuttis

integral at k = ko, choosing ko to be of the order of the inverse

=

closest approach of the test particle to a thermal

o ignorinz ths cccasicnal

paramster, and that become arbitrarily infreguent a3 the plasma
paramater is lowered, relative to the part of the scattering that
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section. One exception to this occurs near the instebilits
thresnold, whiech is characierized b the exisionse c© a share
nresnoli, Holh Ls CHaracuerlzed O tae existense Ci a 3snary
o o -2 2 2, 2.1/
rinirun in D0 (k, -ik - V) | = &7 [(x7 + v ) + }l 2
-, =il E i .
o T 1
Y S e T L P A Q ot oo o =
The minimum eventually becomes steep sncugh te
i caas - . . e o o
invegratlicn difficuit. When it becomes sufficiently stszep, 2
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delta-function approximatidn enables one to write down the leading
term in ¥ in terms of the behavior of the integrand near the
minimum.

The minimum value of the denominatorg’5 may occur at k = O,
or at finite values of k (when 4, < 0), depending upon Te/Ti. The
effect on < is more marked in the latter case (large T/T;)
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because cof the k7 factor in the
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III. NUMERICAL RESULTS

We restrict ourselves to the case in which Ve >>‘VO, a’

and V,. Also ki will always be >> [wr [ and Iwi | . Under these
restrictions, the first logarithm in (8) is well approximated by
/4 4n (ki/ki) £ In A, say. Also, Fy (Vé cos 6 is well approxi-
mated by (2m Vi)‘l/g, and F! (VO cos 8) by -(2m Vi)-l/2

-2

(u - Vs (cos 9 cos 7 + sin 6 sin y sin o)) V, - The electron

contributicn to ¢ is satisfactorily represented by k°. The ion
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forms, however,

following two-dimensional definite intezral
. 1 b -
Joeammarke 22 (9)

where
217 1
2| 1 2 2
e [ ax J L oAn (4] + 0))
/QEEﬂV 0 -1 B -
" ( il ) — (1
1 0o - x
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: ; 2 2, 2 ]
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The symbols mean the following

T ( Vo cos 6
¢l = 1+ pA

T.

i /2 v,
2
[=+]

- -y

2 (r) = /2 p[ xel 4y

)

-0 y - T
T .
Y o e I A
1,2 = 5 ;f—- v S 1
i i
s (5 ) Va 2.1/2 . .
T o = Vg cos y) - v; (1 - x%) sin y sin ]

The only @-dependence of the integrand is the $in*w in the last
tern of §,. The last expression defines the functions a (x) and

T (x) for later use. In the cases consijerel, V << Vs SO /v
"o

dominetes the first term in Eq. (9). Consistent with the fact

that the icn integral is the dominant contribubtion ani vV >> V.,
o} i
\ 2,,.2
we chocse k_ =V /2e”.
o o
The isotrcezic case (Vd = J) 1is considzred first (Fig. 3)

2 8ﬂ q2 \,2 n I.J 2
< (M) > = s 3
m vV
0
8m q e® n L v
= - o A - :9 T .
Q) v =0
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That is, C? is proportional to the sum of what is ordinarily called
the thermal scattering and the additional scattering due to any
enhanced fluctuations which may be present. Note that a fixed
value of ®2 means smaller total deflection for higher velocities
Vo'

The result of the numerical integration for Vd = 0 and

varicus ratios T /T. is shown in Fig. 3 for different values of
e’ 71 hd

V_ - In all cases the ratio me/mi is chosen to be 1/1836, so that

-

7 desl with hydrogen plasmas throuzhoul. For reference pur-
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ed on the same scale, with the factor
2 2 2 u R X
8t q e n LO/A VO taken out. Up to terms of O (Vi/Ve),

Tidrman and Evietar's formula is independent of V_. In all casss,

e’ 71 i
and thus zlso the deflection. But the effect is not dramatic

. SR N o I~0 A A At e alr vamaroa A oAcroea
st a2 Tinite enzle of the order of o037, and the veak moves Toward
ol - ~ ol . S ~AA ot dara] o
00° as V_ increszses. This peaking can be enplsained gualitatively
o z e
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the low-k part of the spectrum, with velocities of the order of the
ionic sound wave speed, 1/ KTe/mi’ along K . These are the fluctua-
tions which are enhanced. In order for them to deflect a test
particle efficiently, iwo conditions must be met: (1) The test
particle must see a nearly time independent electric field when
viewed from its own instantaneous rest-frame (% . ﬁg = 4/ KTe/;;s,
and (2) that k nust correspond to the direction of propagation of

the most enhanced flucltuations. In this geometry, the fluctuaticns

are rost enhanced for k parallel to V

>> 4/ “xe/mi it goes from 1 to 5 tim
the cosine of the anzle between V  and

o

enhanced kK rust go to zero to satis

very large Vo’ the peak will 1i

Figure 5 illustrates the effect of incrzasing ths relativs
drift V, at fixed T , T., and V_. The criticel drift{ velocity

d e 1 o]
(numericzlly determined zs the value of Vd for which ?2 first

By the time V,/V, gets to be 5.h8, the integreand in I (Ea. (22))
a

Y i
N rmTr moales et A I v S e PR o !
has become so sharply peaked avcund the minimum value o ]fg ;
5 <3 Wapemes ALEL +
that the two-3dinznsional integreation beccnes alfficult.
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The peak is to some extent offset by a large positive peak which
occurs near x = O. The volume under either peak is much greater
than the difference, which contributes to Fig. 5.

For Vd within an infinitesimal distance of the instability
threéhold, the integral in Eq. (10) can be approximated by its
contrivution from the immediate neighborhood of [¢2 lmin only.
The o-integration can be done explicitly, and in the limit, the

x-intezgrand goes over into a delta funciion, givin

(3

o’ 'r Yo
- -1/2 1
- ».F, (V.x)/ ¢C / (x) 4n ,
J "3 Yoo ¢ e (%,
(12)
where we have explicitly separated the ¢-dependence of $i according
to

2 2 .
¢ x) = £ (x) -2 (x),
; ¥ e (x )
C (x) =. 5 — S .
o - el 2

X for wnich € takes cn its minimum by a numericel sesarch.
Unfortunstely, the d2lta-function approximation (12) is
likely to be useful only as a "display" forrula. The reazson is
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the slow (logarithmic) divergence in in { 1/e (xo)} at the instability
boundary. Near the instability boundary, e (xo) varies propor-
tionately to IVd -V, | . To increase fn v,/ |Vd -V, | 1 by an
order of magnitude, [Vd - VC I/VC must be decreased by a factor

of 9. since in Fig. 5, one is already within 0.1 per cent of

the critical drift velocity, this means one has to be able to

control Vd to one part in a million, or better, to increase the

Hh

scattering by an order of magnitude, an experirental absurdity.

m =T A PONPIP S, Faln S 33 s Ny ol PO - -
The 810w character of the divergencs malkes grastic 11y enhanced
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scattering extrencly wnlikely. 1
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t to the

his is in sherp contra

ur

electrcomagnetic wave case,7 where the divergence is 0 (1/e (KO)).
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IV. DISCUSSION AND SUMMARY

Deflections of a test particle by a plasma may be enhanced
by raising the electron temperature or the electron drift, as

previously noted by Tidman and Eviatar. The purpose of this

calculation has been primarily to meke this conclusion more
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APPENDIX

REMARKS ON DEFLECTION TIMES; COMPARISON WITH
THE THEORY OF BROWNIAN MOTION

Our quantity < (A6)2 > is closely related to the "ninety-
4,8

degree deflection time", Ty

-
TD is definad for any test particle distribution ft (v, t) which

used by Tidman and Eviatar.

obevs the linear Fckler-Planck eguation

“

df N 2 -
t o) = 1 ) =
— = - = .« (Ff)+z ———: (71,) (A1)
ot 7 t 2 - t
ov ;v dV
- < (2 . e B
and reduces tc £, =6 (v -V ) at t = 0. It is defined by
9
2
<v > 1
T, E |
<v, >/t |
3 <vy 2ot |y,
2 — - . 2 noo - =2 ..
where < v > = [ £, v dv, and where < o> B L (v - V_ v/
J J 7L '
- =3
T

=11
!

=\ L L. I . . -
whers T, (V ) is tne sum of the twodiesonzl cormonents of (v )




- 3
which are perpendicular to V0 « The expression for T appropriate
to this case has been calculated by Tidman, Guernsey, and
Montgomery9 and when it is inserted into the expression Just given

for v one gets

D)

o= b /< (10)2 >, | (83)

with < (A9)2 > given by our Eg. (11), as the relation between

T, and < (Ae)2 > . [t disn /v..]

o] oo
However, the interpretaticn we are siiachinz to
f\2 3 3 - L Y- B N4
< (A8)7 > is somewhat different. It is oy hyrothesis a srall

for a test geriicle in a plasrma then wz now possess. Bub an
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. : ) 2
2 2 A ~ 1 BV .
<vy > > <V, >, we get t90° = 28 In (1 + e ), which may

disagree by orders of magnitude, fbr Vo large, with Eq. (A3).
We infer from this example that: (i) t = o values of

Fokker-Planck coefficients are more reliasble guides to small

angle deflection times than to ninely degree deflection times;

and (ii) more fundemental work is needed (perhaps numericsl)

on the test garticle Fokker-Planck equation in & plasma bafore
cne can male convincing stetemsants about larze angle deflsction

<
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FIGURE CAPTIONS

Figure 1. Proposed Experiment (Idealized). The plasma is uniform
in the rectenguwlar solid and the electrons drift with
velocity'va along its length. .The test particles of velocity
Vo strike the plasma on_the front face making an angle vy
with Vd' The test particles are deflected through a small

< (A9)2 >'l/2 and are detected ziter they emerge from

angle

Figure

Figure 3. TlTormalized Deflecticn, o, vs T
t
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